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A model to describe the growth of nanoclusters in silica via ion-beam synthesis is introduced. Kinetic Monte
Carlo simulations indicate that nucleation, growth, coarsening, and fragmentation occur throughout implanta-
tion, leading to a steady-state size-distribution shape that agrees with experimental observations. A set of
coupled rate equations are derived and solved within a self-consistent mean-field approximation. An interme-
diate asymptotic scaling analysis helps to identify the important experimentally accessible parameters that
control ion-beam-synthesized nanocluster size distributions. The model predicts that the shape of the as-
implanted size distribution depends only on a characteristic length governed by the effective diffusivity,
effective ion solubility, and the volumetric flux while the average cluster size is determined by the solute/
matrix interface energy.
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I. INTRODUCTION

Far-from-equilibrium solid-state dynamics driven by ion
irradiation/implantation has had a long history in modern
science and remains a frontier of research for nuclear mate-
rials development and electronic device processing.1–6 An
example of this far-from-equilibrium growth process is
found in the ion-beam synthesis �IBS� of nanocrystals. In
IBS, energetic ions are implanted into a suitable matrix in
which their solubility is low.7,8 The embedded ions are mo-
bile within the matrix and can encounter other atoms even
during implantation. These encounters lead to cluster nucle-
ation and growth. However, cluster growth is necessarily ac-
companied by ion-induced collision cascades. The damage
causes the clusters to break into fragments and limits their
maximum size.9 This basic understanding of IBS has been
exploited to fabricate interesting nanostructures9–15 and alter
cluster size distributions.6,8,9,15

However, unlike low-dose semiconductor doping via im-
plantation, that employs doses approximately four orders of
magnitude lower than those employed in IBS, and is exten-
sively studied and understood,16–19 no detailed, comprehen-
sive, quantitative theory has been developed for predicting
and controlling the nanocrystal size distribution produced by
IBS. Moreover, the minimal set of parameters required to
predict the shape of the cluster size distributions arising from
IBS has not been determined.

An effort to describe a quantitatively size distribution dur-
ing IBS was described.20 This study assumed that nucleation
and growth were delayed until after implantation. The model
included the nucleation, growth, and coarsening of nanoclus-
ters embedded in a matrix. Quantitative agreement between
the self-consistent solution to a set of coupled rate equations
and kinetic Monte Carlo �KMC� simulations was obtained.
In addition, the solutions were shown to reduce to well-
known scaling solutions for coarsening size distributions.
However, the model fails to explain the experimentally ob-
served size distributions.9,21 As a result, an improved model

for IBS has been introduced that is built upon the prior
work.22 In this paper, this model and its predictions are de-
scribed in detail. The model includes the six atomic-scale
processes during implantation which are important to
growth: �1� ion implantation into an amorphous matrix, �2�
the �off-lattice� random walk of implanted atoms, �3� the
attachment of atoms to each other and existing clusters, �4�
the relaxation of the shape of the clusters, �5� thermally
driven cluster dissolution, and �6� impingement-induced
fragmentation of clusters. These processes are explored using
two different approaches: �1� KMC simulations and �2� the
mean-field self-consistent solution to a set of coupled rate
equations. The model’s predictions for cluster size distribu-
tions are presented. The present study focuses solely on the
evolution of the cluster size distribution during implantation.
The model predicts that there are two key parameters gov-
erning the as-implanted size distribution for a given material:
�1� the characteristic length, L��Dn� /F�1/2, where F is the
volumetric implantation rate, n� is the effective solute solu-
bility, and D is the �effective� diffusivity of the implanted
ions, and �2� the interface energy between the matrix and
growing clusters, �.

II. KINETIC MONTE CARLO MODEL OF ION MIXING,
NUCLEATION, AND GROWTH

In a kinetic Monte Carlo simulation, one identifies the key
kinetic processes of the system and assigns rates of occur-
rence to these processes. In our model of IBS, the six afore-
mentioned kinetic processes are included in the KMC simu-
lation as described below.

The introduction of ions into the matrix is governed by
the implantation rate F, defined as the number of atoms im-
planted per unit volume per unit time. Experimental values
of F can be computed by taking the reported areal dose rate
and considering the depth of the implantation profile. The
actual rate of the implantation event is computed by multi-
plying the volumetric implantation rate by the system cell
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size, and the act of implantation is carried out by making an
atom of the implanted species appear in a randomly chosen
location within the simulation cell.

Once atoms are inside the system, they may roam
throughout three-dimensional space. Within KMC, the atoms
go through thermally activated hopping events from meta-
stable site to metastable site within the amorphous matrix.
These off-lattice monomer hopping events occur in random
directions and drive the relaxation of the far-from-
equilibrium system. In the context of implantation, atomic
mobility can be enhanced by the excess concentration of
point defects resulting from the collision cascade, as in the
phenomenon of transient-enhanced diffusion.18,23 If one may
characterize this Brownian atomic motion by its equilibrium
parallel, D, then the random hopping events occur at a relax-
ation rate rmigration= 6D

a2 , where D is the �transient-enhanced�
diffusivity of the implanted atom in the matrix. The hop dis-
tance, a, is taken to be a=5 Å, roughly the cube root of the
volume of a SiO2 formula unit in the oxide.24

When a monomer meets another monomer or cluster dur-
ing its movement, attachment takes place instantly whenever
the distance between the particles is within a capture length
rcap, measured between the surfaces of the reacting species.
Hence, there is no adsorbing state within the model. For this
work, we set rcap=0.

Cluster relaxation is driven by a reduction in surface en-
ergy. Under most circumstances, the interface energy is an-
isotropic and the resulting Wulff shapes can be quite com-
plex. For simplicity, we assume that interface energies are
isotropic, and that relaxation of the clusters to equilibrium
spherical shapes is rapid compared to the time scales associ-
ated with other kinetic processes in the problem. Conse-
quently, whenever an adatom contacts a cluster or another
atom, the cluster is assumed to become spherical immedi-
ately, with volume equal to the sum of its constituent atoms.
The volume of each Ge atom is taken to be 22.7 Å3, the
volume per atom in the crystalline phase. Changing the iso-
tropic interface energy assumption will alter details of the
predictions but the gross features of the size distributions are
not expected to change. The relaxation process conserves the
center of mass of the adatom and cluster, and thereby imparts
a small mobility to clusters.

Atom dissolution occurs when one of the constituent at-
oms becomes detached from the host cluster. All atoms on
the surface of a cluster are assumed to have equal probability
of detachment and once an atom detaches, it moves to a
random location on the surface, with its surface a detachment
distance rcap away �measured normal to the cluster surface�.
In the present study, rcap=0.

The detachment event creates a monomer within the ma-
trix and also shifts the position of the original host particle to
conserve center of mass. Hence, after each detachment event,
distances between the atom and all other particles are
checked for instant relaxation, with the only exclusion being
the distance between the formed atom and its original host.
The same exclusion applies when distance checking for the
shifted original host particle. However, it is possible that a
series of cascading relaxational events occur that lead to lo-
cal clustering of mass that includes both the detached atom
and its original. Therefore, the exclusion in instant relaxation

only applies between the detached atom and its original host
particle �for the current iteration�. If either one becomes ab-
sorbed to form a species, then the restriction on the distance-
checking routine is lifted.

For a cluster of size R, the rate of desorption is20,25

rdetachment = 4�R2D

a
n� exp� 2��

RkBT
� , �1�

where 6D
a = 6D

a2 a is the “velocity” of diffusing atoms and
1
6n� exp� 2��

RkBT � is the local concentration of atoms that diffuse
radially outward from the spherical cluster. Here � is the
interfacial energy between the precipitate and the matrix and
� is atomic volume of the implanted species. �Detailed deri-
vation of Eq. �1� can be found in the work of Yi et al.20�
It should be noted that the Gibbs-Thomson relation,
n�r�=n� exp� 2��

RkBT �, employed above to describe the equilib-
rium concentration of solute atoms at the matrix-cluster in-
terface, contains information about the critical nucleus size
defined in homogeneous nucleation theory, rcritical=

−2�
�Gv

,
where �Gv is the free-energy change per volume of precipi-
tation. n�=ns exp�

−Ef

kBT � is solubility of the solute species in
the matrix at the given temperature, where ns is the density
of sites and Ef is the internal energy change upon removing
a solute atom from its bulk phase �reference state� and plac-
ing it inside the matrix. This formation energy, together with
the contribution from configurational entropy, approximates
the chemical potential of the solute atom inside the matrix. In
the limit of very low solubility, and noting that the reference
state is taken to be the bulk phase of the implanted species,
one may define

rcritical =
− 2�

�Gv
=

− 2��

�bulk − �solution
=

2��

Ef + kBT ln c
, �2�

where c is the number-per-site of the solute atoms. Equation
�2� allows one to relate the relaxation model to fundamental
theories of phase transformation.

For computational efficiency, the effect of ion impinge-
ment on a cluster is modeled with a coarse-grained approach.
Following Heinig and co-workers,9 we employ a scheme
wherein each collision cascade displaces every atom in an
impacted cluster in a random direction by a distance r gov-
erned by a Poisson displacement probability distribution,

p�r� =
1

8��3exp�− r/�� . �3�

The characteristic length � reflects the ion mass and energy,
and is determined by fitting the displacement profiles for an
ion-damaged embedded slab computed using TRIM,26 as is
done by Heinig et al.9 Typical values of � range between 3
and 5 Å. �A more detailed description of the process is pre-
sented below.�

After all atoms within a cluster are scattered from an ion
blast, the system is once again allowed to relax instantly, as
atoms and clusters that “touch” each other are bonded to-
gether. When a cluster is fragmented and relaxed according
to this scheme, the result is a power-law fragment size dis-
tribution. Such power-law fragment size distributions have
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been observed in both molecular-dynamics simulations27 and
sputtering experiments.28 This coarse-grained description of
the cascade provides a good description of the results of a
cascade. Specifically, molecular-dynamics simulations of Au
ions impacting free-standing Au clusters yield a fragment
size distribution that is characterized by a power-law distri-
bution of small fragments, fs�s−	, with fs the number of
fragments with s atoms, and 	=2.3.27 Modeling the same
process using KMC as described here yields the same expo-
nent. Further, the exponent appears to be independent of ion
mass and energy, as shown in Fig. 1.

An example of the effect of ion impingement is illustrated
in Fig. 2, where an initial spherical Ge cluster of radius 2 nm
undergoes an end-of-range damage cascade caused by a Ge
ion that started with 120 keV outside of the matrix. The
result is a smaller central cluster surrounded by collection of
nearby smaller fragments, with a size distribution as de-
scribed in Fig. 1. For this simulation �=3.5 Å, a value ob-
tained by first performing a TRIM �Ref. 26� implantation
simulation for the case of a 4 nm Ge slab embedded within
SiO2 at the average implant depth for 120 keV Ge ions. The
resultant Ge recoil distribution, which may be converted to

the displacement probability distribution of atoms dislodged
from within the slab, is then fit to the normalized form of the
atomic displacement distribution described before, with � as
the only fitting parameter, as shown in Fig. 3. Note that TRIM

indicates that an average of 5.9 keV is transferred to the
recoils from the 4 nm slab per ion collision. Since the esti-
mated total interface energy difference �using the present
theory to estimate the interface energy� between the “before”
and “after” configurations in Fig. 2 is roughly 3.2 keV, the
calculation suggests that there is ample energy available dur-
ing the collision cascade for creating the observed clusters.

Unless otherwise noted, the KMC results presented below
are obtained by imposing periodic boundary conditions upon
a cubic cell with and edge length of 30 nm. �Note that atom
hopping, which takes place at Angstrom scales, is still off-
lattice.� Statistics are obtained by averaging over 30 simula-
tions. Cluster size distributions are obtained by binning clus-
ters according to radii, using bin widths of 1 Å. Statistical
errors are computed as the standard deviation of the 30 simu-
lations divided by the square root of the number of indepen-
dent trials �typically 30�. The error bars so computed are not
resolvable on the scale of the plots, and for clarity, have been
omitted.

III. RATE EQUATIONS

A mean-field approach to model nanocluster size-
distribution evolution in during IBS is also employed not
only to complement KMC but also to provide analytical in-
sight into the behavior of the system. Based on relaxational
theories in the literature,20,29,30 a set of coupled rate equa-
tions �RE� are derived with terms added to describe the ef-
fects of cluster fragmentation. Assuming that an ion-cluster
collision event breaks the cluster into a power-law distribu-
tion of fragments, one constructs the following set of
coupled differential equations:

d	n1

dt

= F − 2D
1	n1
2 − D�
j�1


 j	nj
	n1
 + 2
	n2

�2

+ �
j�2

	nj

� j

+ F��
j�1

	nj
�j + 1�K1�	, j� , �4�
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FIG. 1. �Color online� Fragment size distribution after an im-
pingement followed by relaxation, as compared with KMC results.
Y�n� is the number of clusters consist of n atoms. A slope of −2.3 is
reported by Kissel and Urbassek �Ref. 27� for sputtering of a spheri-
cal Au cluster modeled with molecular dynamics.

10 nm 10 nm

10 nm

10 nm 10 nm

10 nm

(b)(a)

FIG. 2. �a� A 2 nm radius cluster. Box dimension L=10 nm. �b�
After undergoing an end-of-range damage cascade induced by an
ion with prematrix energy of 120 keV, the system becomes a
smaller cluster surrounded by a power-law distribution of frag-
ments, as depicted in Fig. 1
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FIG. 3. �Color online� Normalized Ge recoil distribution as a
result of implanting 120 keV Ge ions into a 4 nm Ge slab embedded
within SiO2 100 nm below the surface as computed by TRIM. The 4
nm slab is centered at zero. The predictions stemming from Eq. �3�
with �=3.5 Å are also shown.
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d	ns

dt

= D
s−1	ns−1
	n1
 − D
s	ns
	n1
 −
	ns

�s

+
	ns+1

�s+1

− F	ns
��s + 1� + F��
j�s

	nj
�j + 1�Ks�	, j� , �5�

where 	ns
 is the average density of clusters containing s
atoms, D is the effective diffusivity within the matrix that
characterizes the rate of relaxation, 
s is the capture length
for a cluster of size s to capture a diffusing monomer, and �s
is the typical amount of time between individual desorption
events from an s cluster. The values of 
s and �s are solved
for self-consistently as done by Yi et al.20 The terms of Eqs.
�4� and �5� that depend on the volumetric flux rate F are the
driven/fragmention parts of the implantation process. Here �
is the atomic volume and the term 	nj
��j+1� gives the
probability of collision between an implanted monomer and
a j cluster. Ks�	 , j� is a kernel indicating the number of s
clusters generated as a result of a fragmented j cluster, where
the parameter 	 characterizes the slope of the power-law
fragment distribution arising from an N cluster and appears
to be independent of ion mass and energy �	=2.3�,

Ks�	, j� = A�j,	�s−	 �6�

with the normalization condition

j = �
s=1

j−1

A�j,	�s−	s = A�j,	��
s=1

j−1

s1−	. �7�

The form of Eq. �6� is motivated by the results of molecular-
dynamics simulations27 and our KMC formulation �see Fig.
1�. It will be shown below that a typical implantation arrives
at a steady-state profile as a result of the balance between the
fragmentation and relaxation mechanisms.9 Mathematically,
it is simple to find this steady-state solution. The derivation
begins with the identity

P�s� =
s	ns


�
s=1

�

s	ns

, �8�

which defines the probability of an atom residing in a cluster
of size s, P�s�. At steady state, dP�s�

dt =0. With the knowledge
that �s=1

� s	ns
=Ft and �s=1
� s

d	ns

dt =F, one obtains the follow-

ing expression by differentiating Eq. �8� with respect to time,

d	ns

dt

=

	ns
 �
s=1

�

s
d	ns


dt

�
s=1

�

s	ns


=
	ns


t
. �9�

Equation �9� allows for direct computation of the steady-
state size distribution during implantation. By substituting
Eq. �9� into Eqs. �4� and �5�, it is possible to solve numeri-
cally for the steady state 	ns
 for a given set of D, F, n�, and
�, in the limit of large t.

This set of steady-state rate equations can be put into
dimensionless form by scaling all lengths by L= �Dn� /F�1/2

and all times by n� /F, yielding

	ñ1


t̃
= ñ� − 2
̃1	ñ1
2 − �

j�1

̃ j	ñj
	ñ1
 + 2

	ñ2

�̃2

+ �
j�2

	ñj

�̃ j

+ ñ��̃�
j�1

	ñj
�j + 1�K1�	, j� �10�

and

	ñs


t̃
= 
̃s−1	ñs−1
	ñ1
 − 
̃s	ñs
	ñ1
 −

	ñs

�̃s

+
	ñs+1

�̃s+1

− ñ��̃	ñs



�s + 1� + ñ��̃�
j�s

	ñj
�j + 1�Ks�	, j� . �11�

The tildes represent dimensionless versions of dimensioned

quantities. It is noted that ñ�= F̃ and that D̃=1.
Typically, one is interested in studying the size distribu-

tion in radius space to make connection to experimentally
observed data. To that end, only cluster sizes of s�1 are of
practical concern due to the s1/3 dependence of a cluster ra-
dius. Therefore, one may simplify the analysis further by
expanding 1 /�s in Eq. �11� in terms of other parameters,20

under the assumption that Rs�Rs−1+rcap,

	ñs


t̃
= 
̃s−1	ñs−1
	ñ1
 − 
̃s	ñs
	ñ1
 − 	ñs

̃s−1ñ� exp��̃/R̃s�

+ 	ñs+1

̃sñ� exp��̃/R̃s+1� − ñ��̃	ñs
�s + 1�

+ ñ��̃�
j�s

	ñj
�j + 1�Ks�	, j� , �12�

where �= 2��
kBT , the capillary length. Since the capture length,


s, is solved for self-consistently from the solution 	ns
, and
	 is treated as a constant, the steady-state solution of Eq.

�12� formally depends only on t̃, ñ�, �̃, and �̃. These four
parameters and specific influence on the steady-state solution
are discussed below.

IV. RESULTS AND DISCUSSION

For an initial calculation, we consider parameters near
those appropriate for the implantation of Ge into amorphous
silica carried out by Sharp and co-workers.21 The total
ion dose reflects the experimental final density at around
6 at. % �N0=4
1021 cm−3� and the parameter � is taken to
be 3.5 Å, corresponding to the end-of-range impact
strength of Ge implanted with 120 keV initial energy
�as indicated by TRIM�. The implantation rate is set to be
F=F0=10−6 A−3 s−1, roughly a factor of seven higher
than a typical experimental value, Fexp=1.5
10−7 A−3 s−1

�corresponding to 1.5
1012 cm−2 s−1 when taking into
account the 100 nm of implant depth�, to enable reasonable
computation times. The effective diffusivity �D� during
ion irradiation is unknown and is set here to be
D=D0=6.47
10−10 cm2 s−1, where D0 is the approximated
room-temperature diffusivity of Ge in silica.24 The effective
solubility of Ge in SiO2 during implantation at room tem-
perature is taken to be n�=1.01
108 cm−3. Below, we
deduce that the Ge /SiO2 interface energy is near 1.5 J m−2.
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However, choosing interface energies this large increases the
critical cluster size for nucleation, and the associated simu-
lations require substantial computational resources. Thus the
Ge/silica interface energy is set to 0.2 J m−2 for these initial
calculations.

Typical results are shown in Fig. 4 �RE� and Fig. 5
�KMC�. Figure 4 plots both the average radius of the clus-
ters, 	R
,

	R
 =
1

N
�
i=1

N

Ri �13�

with the index i running over all clusters, Ri the radius of
cluster i, and N the total number of clusters, as well as the
cluster number density as a function of time. In the earliest
stage �before 0.1 s�, the number of clusters increases rapidly
as a result of many nucleation events. Between 0.1 and 30 s,
coarsening of the clusters commences, hence the number
density of clusters rises slowly while the average radius of
the clusters rises rapidly. Up to this point, the effect of frag-
mentation has been negligible relative to other processes due
to the low concentration and small size of the clusters, and
the growth process is similar to that observed in two-
dimensional �2D� nucleation and growth models, as shown in
Fig. 5�a�. The effect of fragmentation gradually becomes sig-
nificant as both the concentration and the size of the clusters
rise, raising the likelihood of ion damage. This eventually
leads to a peak in 	R
 and the average cluster size starts to
decrease. As more mass becomes implanted into the matrix,
ion damage helps to redistribute mass and create more frag-
ments. For times larger than 30 s, the clusters continue to be
damaged, the average radius decreases, and the volume fills
rapidly with clusters �Figs. 5�b� and 5�c��. In the final stages
of growth 	R
 approaches a steady-state value.

Figure 6 compares KMC and RE results for the evolution
of a cluster size distribution during implantation, using the
aforementioned parameters. The two computational ap-
proaches display good agreement during the various stages
the system undergoes during implantation. In Fig. 6�a�, at
less than 1% of the total dose, the effect of damage cascade
is negligible and the distribution evolves as a purely
nucleation-and-growth system with external input of mass.
However, as more atoms are introduced into the matrix and
the clusters become larger, as shown in Fig. 6�b�, the amount

of mass transferred from the larger sizes to the smaller sizes
becomes appreciable, and a bimodal size distribution ap-
pears. As implantation continues, clusters grow while some
of them experience fragmentation and the bimodal distribu-
tion becomes wider and more weighted toward the smaller
particles, as displayed in Fig. 6�c�. The second peak at large
sizes eventually disappears, leading to a unimodal profile of
smaller particles. Finally, by the end of implantation, the
system gravitates toward a log-normal-like distribution, as
shown in Fig. 6�f�.

Another comparison between KMC and RE results, this
time with the interface energy equal to 0.5 J m−2, is shown
in Fig. 7. Again, the two approaches display near-

FIG. 4. The average cluster radius �solid line, left axis� and the
cluster number density �dashed line, right axis� as a function of time
for typical growth conditions, based on rate-equations calculations.

FIG. 5. �Color online� Microstructural evolution �a� at 30 s, �b�
at 300 s, and �c� at 3000 s from KMC simulations �see text�.
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quantitative agreement throughout the evolution of the size
distribution. It should be noted that increasing the value of
the interface energy effectively increases the size of the criti-
cal nucleus in nucleation and growth. This implies that, in-
stead of forming many small clusters during the nucleation
stage, the system prefers forming fewer, larger clusters. Not
only are these large supercritical nuclei stronger sinks for
monomer attachment than smaller ones, they also coarsen
more quickly due to the exponential dependence of desorp-

tion rate on � in Eq. �1�,20 hence they grow faster and extend
the overall width of the size distribution. This impact is
manifested when one compares Fig. 6 to Fig. 7. In Fig. 6, the
interface energy employed is 0.2 J m−2, which translates to
roughly a critical nucleus radius of 1 Å, according to Eq.
�2�. This value is obtained if one takes Ef to be 0.88 eV
�from Carbonaro et al.31�, �=22.7 Å3 �from the molar vol-
ume of Ge at room temperature� and c�6
10−6 �empiri-
cally taken from RE simulations by noting the mass density
at which stable clusters of size s�2 begin to form�, and this
value of rcritical is smaller than the radius of a single Ge
atom, 1.76 Å. Therefore, every species in Fig. 6 is super-
critical and one observes no peak arising from the population
of subcritical particles. On the other hand, for �=0.5 J m−2,
the critical nucleus size becomes 2.47 Å, calculated using
the same parameters described above. A supercritical nucleus
therefore must consist of at least three Ge atoms. The result
is the observation of a large population of monomers and
two-atom clusters at the very early stages of implantation,
when the effect of fragmentation is negligible and nucleation
and growth is the dominant mechanism of cluster formation.
This peak at the one-atom and two-atom range arises due to
the frequent attachment/detachment reactions of these two
species, which are the most numerous. Monomers frequently
run into each other to form two-atom clusters, only to break
apart into monomers again due to instability. Beyond the
two-atom clusters, a structure appears that resembles a
driven, coarsened distribution. This is illustrated in Fig. 7�a�.
Later on, as collision cascades become more frequent, the
majority of the clusters in the system come from scattered
fragments and the bimodal structure disappears.

The agreement between the KMC simulations and RE
theory warrants further discussion. The kinetic Monte Carlo
scheme simulates a series of stochastic processes that are
inherently local, in contrast to the rate theory that assumes all
interactions are characterized by mean-field quantities aver-
aged over all of space. While agreement between the two
approaches for the purely relaxational case is analyzed and
documented,20 its is still somewhat surprising to observe
their concurrence throughout the implantation process in the
IBS model. This is because the fragmentation event intro-
duces into the stochastic model a length scale, �, that gov-
erns the mass displacement distance upon collision, with the
result being a smaller central cluster surrounded by hovering
fragments, as shown in Fig. 2. This length scale is not ac-
counted for in the mean-field theory, yet the two models
display good agreement on their overall behaviors. One ex-
planation is that the fragmentation event has a similar effect
as the desorption event by evaporating mass from the origi-
nal cluster to locations nearby. The mean-field approximation
applied to the purely relaxational case therefore carries over
to the study of ion-beam synthesis. However, the length scale
� could still play a major role in the difference between the
KMC and RE results.

One discrepancy between the KMC and RE models arises
from the treatment of the fragment size distribution in the
rate equations. The mean-field theory assumes that each im-
pingement breaks up the impacted cluster completely into a
continuous distribution of smaller fragments, whose size dis-
tribution is characterized by a power-law function. However,

0 2 4 6 8 10 12 140
0.1
0.2
0.3
0.4
0.5

RE
KMC

0 2 4 6 8 10 12 140
0.1
0.2
0.3
0.4
0.5

0 2 4 6 8 10 12 140
0.1
0.2
0.3
0.4
0.5

0 2 4 6 8 10 12 140
0.1
0.2
0.3
0.4
0.5

0 2 4 6 8 10 12 140
0.1
0.2
0.3
0.4
0.5

0 2 4 6 8 10 12 140
0.1
0.2
0.3
0.4
0.5

(a) (b)

(c) (d)

(f)(e)

Radius (Angstrom)

Pr
ob
ab
ilit
yD

en
sit
y

FIG. 6. �Color online� �a� KMC �dashed line� and RE
�solid line� size distributions at 0.27% of the experimental
final density, with �=3.5 Å, 	=2.3, F=F0=1013 cm−2 s−1,
D=D0=6.47
10−10 cm2 s−1, n�=1.01
108 cm−3 and the inter-
face energy 
=0.2 J m−2. �b� 1.49%. �c� 2.70%. �d� 5.14%. �e�
27.0%. �f� As implanted. The bin size is 1 Å. Error bars for the
KMC results are small enough to be omitted for clarity of display.
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FIG. 7. �Color online� �a� KMC �dashed line� and RE
�solid line� size distributions at 0.27% of the experimental final
density, with �=3.5 Å, 	=2.3, F=F0=1013 cm−2 s−1,
D=D0=6.47
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108 cm−3 and the inter-
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27.0%. �f� As implanted. The bin size is 1 Å.
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that is clearly not what is seen in Figs. 1 and 2, where most
of the original cluster remains. The rate theory’s treatment of
fragmentation events is therefore an overkill of the actual
process it aims to describe. The impact of this overestimation
is negligible when the cluster sizes are not large in compari-
son to �, meaning the KMC collision event would result in
sufficient local mixing such that the mean-field theory’s ap-
proximation on the fragment size distribution is acceptable.
On the other hand, one may imagine the disagreement to
widen as the clusters involved become larger. This overesti-
mation of the cluster breakup process possibly contributes to
the lesser agreement between the KMC and RE results in
Fig. 7�f� in comparison to Fig. 6�f�.

The effect of the critical nucleus size is further illustrated
in Fig. 8, where early-stage size distributions from rate-
equation calculations using different values of � are com-
pared. It should be noted that, for �=0.2, 0.3, 0.4, and
0.5 J m−2, the critical nucleus radius is 0.99, 1.48, 1.98, and
2.47 Å. That means, for both �=0.2 and 0.3 J m−2, the
single Ge atom is already a stable, supercritical particle.
Consequently, their early-stage distributions look practically
identical. On the other hand, when �=0.4 J m−2, the critical
size surpasses the radius of a monomer, and the number of
atoms in a stable particle changes from one single atom to
two atoms �r=2.21 Å�. This discrete jump results in a larger
average size but does not yet produce a bimodal structure
because every single monomer, upon attachment, becomes
stable. If the critical nucleus size is larger than two atoms,
then monomers will frequently run into each other and
breakup soon after, resulting in a peak at the one-atom and
two-atom range, opposite of the coarsening peak.

The impact of finite size on simulation results is analyzed
in Fig. 9. At the very early stage, when the overall number of
atoms in the KMC simulation cell is low and the average
distance between critical clusters is large, the agreement be-
tween the KMC and rate equations is seen to improve upon
increasing the cell size. However, this improvement is no
longer discernible beyond �2.7% of the Ge experimental
dose, which is about 1
1015 cm−2. This implies that finite-
size effects in the KMC simulations are negligible at practi-
cal solute concentrations. This observation, along with the
good agreement between KMC and rate equations results at

higher doses �as shown in Figs. 6 and 7� suggests that finite-
size effects are negligible at sufficiently high doses, and that
the self-consistent mean-field approach for analyzing size-
distribution evolution in ion-beam synthesis is valid.

It is observed empirically that the cluster size distribution
reaches a steady state. As this limit is approached, the shape
of the cluster size distribution changes slowly and the steady-
state shape serves as a good description of the shape of the
cluster size distribution during the latter stages of implanta-
tion. In this high-dose regime, the agreement between the
rate equations and KMC results indicates that one can em-
ploy the rate-equation-based description for quantitative
analysis of the asymptotic behavior. The analysis likely ap-
plies to most real experimental systems since the profile
evolves very slowly toward the asymptotic solution, as evi-
denced by Fig. 6 and 7.

Solving Eqs. �10� and �11� for large times yields the
steady-state cluster size distribution. As concluded following
the analysis of Eq. �12�, the steady-state size distribution

formally depends on four parameters: t̃, ñ�, �̃, and �̃. How-
ever, if one evaluates t̃ and ñ� using experimentally believ-
able values, one finds that t̃�1014 and that ñ��10−15. On

the other hand, �̃ and �̃ are on the orders of 1–100. This, by
the conjecture of intermediate asymptotic analysis,32 sug-
gests that the steady-state behavior has negligible depen-
dence on t̃ and ñ�. The asymptotic solution therefore should
depend on two parameters only: the dimensionless atomic

volume, �̃=� /L3, and �̃, which is the interface energy, �,
and the temperature. This conjecture is affirmed by numeri-
cal solutions; moreover, it is found that the steady-state

shape of the distribution depends on �̃, and that � only im-
pacts the average size �for a given L�. This behavior is in
marked contrast to the behavior observed during 2D epitaxial
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FIG. 8. �Color online� RE size distributions at 0.27% of the
experimental final density, with �=0.2, 0.3, 0.4, and 0.5 J m−2 and
other parameters identical to those used in Fig. 6. The bin size is
1 Å.
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growth in which the distribution shape is determined by the
critical cluster size,33 a quantity that depends sensitively on
�.

Experimentally speaking, the atomic volume of the im-
planted species may vary only by a factor of 2 or so from
material to material. If this factor of 2 is incorporated into

the scaling factor of L−3 in the expression of �̃, then the
value of L is merely changed by about a factor of 1.3. These
changes are small in comparison to the range of L
= �Dn� /F�1/2, which can change by many orders of magni-
tude. Therefore, it suffices to say that the length L is the
governing parameter for the steady-state shape of the size
distribution. Numerically, it is found that increasing L not
only increases the average size of the steady-state size dis-
tribution but it also widens the relative width of the as-
implanted profile, as shown in Figs. 10�a� and 10�c�. The
experimental value of Dn� likely varies by orders of magni-
tude between different experimental conditions.18

Unlike L, the interfacial tension between the nanoclusters
and the host matrix, � plays a role only in the relaxational
part of the model. The value of � directly impacts the critical
nucleus size, which sets the scale of the size of the distribu-
tion. In Fig. 10�b�, the critical nucleus radius for �=0.3, 0.6,
and 1.2 J m−2 would be 1, 5, and 39 atoms �for Ge param-
eters� and the distributions go through changes in size sub-
stantially more than those in Fig. 10�a�; however, the shape
of the distributions varies negligibly, if it varies at all, as
shown in Fig. 10�d�. As � is increased, the number of equa-
tions to be solved goes up rapidly due to the exponential
increase in critical nucleus size, and numerical noise be-
comes significant in computing the steady-state solution.
This could account for the slight change in shape as observed
in Fig. 10�d�. Experimentally speaking, the value of � may
be varied by changing the implanted species or the host ma-
trix but it should be noted that experimental values of � are

unlikely to differ by an order of magnitude from those shown
in Fig. 10�d�. Hence, for all practical purposes, the interface
energy does not alter the scaled shape of the as-implanted
size distribution but merely sets the absolute size �once the
shape has been determined by L�.

The aforementioned results suggest that �1� the average
size of the as-implanted size distribution may be tuned by
changing the implanted species/matrix interface energy and
�2� the value of L sets the scaled shape of the as-implanted
distribution. Therefore, experimentally measured as-
implanted size distributions can be fitted to theory to obtain
an estimate for the value of L. Figure 11 displays the fitted
curves for three materials. Ge is best fit with a value of
L=1.38 Å, Co is described by L=0.08 Å, and Ag is de-
scribed by L=2.66 Å.34 For the case of Ge, assuming that
coarsening is very slow �as is observed experimentally10�, we
can compare the observed value with the expected value.
Using the accepted �normal� diffusion coefficient for Ge in
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silica one predicts L=0.051 Å. The measured value for L
exceeds the initial prediction by a factor of �26.4. The im-
plication is that the ratio Dn� /F exceeds the expected value
by a factor of �700. This increase, most likely due to ion
damage within the matrix, is within the range expected for
transient-enhanced diffusion.18,19 Hence, the values of L
needed to model experiments are reasonable. Further, mea-
surements of the shape of the cluster size distribution can be
used to obtain information regarding the transient-enhanced
diffusion coefficient and the effective diffusivity during im-
plantation.

One may also obtain information regarding the interface
energy between the implanted species and the host matrix
during implantation from the steady-state behavior. Since the
shape of the as-implanted size distribution varies negligibly
as a function of �, once the value of L is determined for a
given implantation, the value of � can be obtained by ex-
trapolating from steady-state solutions of lower values of �
to obtain the experimentally observed average size of the
as-implanted clusters. This is shown in Fig. 12, where an
approximately linear dependence of the average radius on
the interface energy is displayed. Taking L=1.38 Å for Ge
implanted into amorphous silica, as shown in Fig. 11, one
arrives at �=1.47 J m−2 by extrapolating to the average size
�27.1 Å� of the experimentally measured size distribution.21

The experimental and computed results for the size distribu-
tion are shown in Fig. 13. The slight difference in shape
between the calculated profile from Fig. 13 and that from
Fig. 13�a� is similar to the minute change in shape seen in
Fig. 10�d�.

The theory also suggests how one might narrow IBS clus-
ter size distributions. Figure 14�a� plots the computed full
width at half maximum, scaled by the average cluster radius,
�R / 	R
, as a function of L for Ge. Figure 14�b� shows the
predicted size distributions. Both sets of data are obtained

using a fixed interface energy of �=0.2 J m2. As L de-
creases, so does the width of the cluster size distribution.
Near L�1 Å the curve shows a sharp downward trend. Ex-
perimentally, L can be decreased by increasing the flux of
ions and/or decreasing the transient-enhanced diffusion, per-
haps by cooling.18,23

V. CONCLUSION

In conclusion, a model for the cluster size distributions
arising during IBS is developed and studied using both ki-
netic Monte Carlo simulations and a self-consistent mean-
field rate-equations theory. The two approaches give a quan-
titative description of the postimplantation experimental
cluster size distributions. The self-consistent mean-field RE
theory yields nearly quantitative agreement with KMC simu-
lations. RE theory predicts that, under typical experimental
conditions, the nanocluster size distribution asymptotes to a
steady state. The steady-state shape of the nanocluster size
distribution depends only on a characteristic length L
whereas the average size cluster is influenced by the inter-
face energy. The theory can be used to obtain information
about the transient-enhanced diffusion coefficient and effec-
tive solubility during implantation, and to develop process-
ing routes to narrow cluster size distributions.
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